
Design Patterns
• Factory Pattern

o A creational pattern that uses factory methods to deal with the problem of creating objects without having to
specify the exact class of the object that will be created. This is done by creating objects by calling a factory
method.

§ Depending on the type of information given to the factory method, it may use a switch statement.
o Allows the user to create new objects without having to know the details of how they're created, or what their

dependencies are - they only have to give the information they actually want.
• Builder Pattern

o Separates the construction of a complex object from its representation. It is used to construct a complex object
step by step and the final step will return the object.

o The builder typically replaces the constructor for an object (making it private), and offers many simple methods
for setting various attributes and specifying how to create the object, and one method for putting it all together
and building the actual object desired.

• Singleton Pattern
o A design pattern that restricts the instantiation of a class to one "single" instance. This is useful when exactly one

object is needed to coordinate actions across the system.
o Commonly used for the creating the abstract factory, or builders.

• Command Pattern
o A behavioral design pattern in which an object is used to encapsulate all information needed to perform an action

or trigger an event at a later time.
o Typically involves an ICommand interface with a abstract method for executing the command, and a invoker

object which is responsible for calling this execution command.
• Adapter Pattern

o A design pattern that allows the interface of an existing class to be used as another interface. It is often used to
make existing classes work with others without modifying their source code and so that it matches what the client
is expecting.

§ An example is an adapter that converts the interface of a Document Object Model of an XML document
into a tree structure that can be displayed.

o This pattern may either extend the adaptee class, avoid it, or implement its interface (best option probably). Either
way, the adaptor should ALWAYS implement the target interface.

• Strategy Pattern
o A design pattern that enables selecting an algorithm at runtime. Instead of implementing a single algorithm

directly, code receives run-time instructions as to which in a family of algorithms to use.
o While in many ways similar to command pattern, the strategy pattern relies on a different relationship between

the context and the strategy (command). In this case, the context holds onto (has a field) for the strategy which it
is initialized with or set to have, and contains a method with some parameters for evoking the strategy, typically
with the same parameters.

• Decorator Pattern
o A design pattern that allows behavior to be added to an individual object, dynamically, without affecting the

behavior of other objects from the same class.
o This is achieved by designing a new Decorator class that wraps the original class. This wrapping could be

achieved by the following sequence of steps:
§ Subclass the original Component class into a Decorator class (see UML diagram);
§ In the Decorator class, add a Component pointer as a field;
§ In the Decorator class, pass a Component to the Decorator constructor to initialize

the Component pointer;
§ In the Decorator class, forward all Component methods to the Component pointer; and
§ In the ConcreteDecorator class, override any Component method(s) whose behavior needs to be

modified.
§ Additional methods may be provided but then in addition to extending the base class, the decorator

should implement another interface extending the original interface with the new method.
UML Diagrams

Design Patterns Examples

Command Pattern

Decorator Pattern

Adapter Pattern

Strategy Pattern

