Design Patterns

Factory Pattern

o A creational pattern that uses factory methods to deal with the problem of creating objects without having to
specify the exact class of the object that will be created. This is done by creating objects by calling a factory
method.

= Depending on the type of information given to the factory method, it may use a switch statement.

o Allows the user to create new objects without having to know the details of how they're created, or what their

dependencies are - they only have to give the information they actually want.
Builder Pattern

o Separates the construction of a complex object from its representation. It is used to construct a complex object
step by step and the final step will return the object.

o The builder typically replaces the constructor for an object (making it private), and offers many simple methods
for setting various attributes and specifying how to create the object, and one method for putting it all together
and building the actual object desired.

Singleton Pattern

o A design pattern that restricts the instantiation of a class to one "single" instance. This is useful when exactly one
object is needed to coordinate actions across the system.

o Commonly used for the creating the abstract factory, or builders.

Command Pattern

o A behavioral design pattern in which an object is used to encapsulate all information needed to perform an action
or trigger an event at a later time.

o Typically involves an ICommand interface with a abstract method for executing the command, and a invoker
object which is responsible for calling this execution command.

Adapter Pattern

o A design pattern that allows the interface of an existing class to be used as another interface. It is often used to
make existing classes work with others without modifying their source code and so that it matches what the client
is expecting.

= An example is an adapter that converts the interface of a Document Object Model of an XML document
into a tree structure that can be displayed.

o This pattern may either extend the adaptee class, avoid it, or implement its interface (best option probably). Either
way, the adaptor should ALWAY'S implement the target interface.

Strategy Pattern

o A design pattern that enables selecting an algorithm at runtime. Instead of implementing a single algorithm
directly, code receives run-time instructions as to which in a family of algorithms to use.

o While in many ways similar to command pattern, the strategy pattern relies on a different relationship between
the context and the strategy (command). In this case, the context holds onto (has a field) for the strategy which it
is initialized with or set to have, and contains a method with some parameters for evoking the strategy, typically
with the same parameters.

Decorator Pattern

o A design pattern that allows behavior to be added to an individual object, dynamically, without affecting the
behavior of other objects from the same class.

o This is achieved by designing a new Decorator class that wraps the original class. This wrapping could be
achieved by the following sequence of steps:

= Subclass the original Component class into a Decorator class (see UML diagram);

= In the Decorator class, add a Component pointer as a field;

= In the Decorator class, pass a Component to the Decorator constructor to initialize
the Component pointer;

= In the Decorator class, forward all Component methods to the Component pointer; and

= In the ConcreteDecorator class, override any Component method(s) whose behavior needs to be
modified.

= Additional methods may be provided but then in addition to extending the base class, the decorator
should implement another interface extending the original interface with the new method.

UML Diagrams

Depiction Interpretation

IDependency la depends on

% Association

[This is a very loose relationship and so I rarely use it, but it's good to recognize and be able to read it.

—D Inheritance

|An & sends messages to a B
iations imply a direct

ion path. In terms, it means instances of A can call methods of instances of s, for example, if a B is passed to a method of an a.

|An & is made up of 5
IThis is & part-to-whole relationship, where a is the whole and B is the part. In code, this essentially implies A has fields of type 5.

_____ 'D Realization / + Public ssociation]
Implementation .
------ > Dependency Private
|Aggregation - “
<>_ Aggregation # Protected
‘— Composition ~ Package |cmeser 5]

|An & is made up of 5 with lifetime dependency
[That is, » aggregates 3, and if the A is destroyed, its 5 are destroyed as well.

Design Patterns Examples

Command Pattern

// Codify commands as function objects by implementing this interface or one like it
// Useful link: http://gameprogrammingpatterns.com/command.html
interface Command {

public void execute(Human human);

// The command pattern nicely supports things like undoing

interface UndoableCommand extends Command {
public void undo(Human human); // NOTE: you could also have the Human come from a constructor
// and store it as state. This would prevent you from easily using lambdas instead of concrete
// classes, though.

// Commands override that method, and any parameters that specific command may want would appear
// in the constructor.

class RunCommand implements Command {
private int miles; // Any state for this command is stored in the class and set in the constructor

public RunCommand(int miles) {
this.miles = miles;

@0verride
public void execute(Human human) {
human.say("I ran " + miles + " miles today!");

}

class AgeCommand implements UndoableCommand {
int prevAge;

@0verride

public void execute(Human human) {
prevAge = human.getAge();
human.setAge(prevAge + 1);

@0verride
public void undo(Human human) {
human . setAge(prevAge);

}

class CommandMain {
public static void main(String[] args) {
Human person = Human.builder().build(); // Courtesy of our default builder

// Make them run

new RunCommand(10@).execute(person); // > Hello world! and I ran 10 miles today!
System.out.println("Age = " + person.getAge()); // > Age = 42

UndoableCommand cmd = new AgeCommand();

cmd. execute(person) ;

System.out.println("Age = " + person.getAge()); // > Age = 43
cmd.undo(person); // Fun stuff

System.out.println("Age = " + person.getAge()); // > Age = 42

"

Decorator Pattern

// Component interface (like a JComponent)
interface Car {
void assemble();

// At least one component implementation (like a JPanel)
class CarImpl implements Car {
@0verride
public void assemble() {
System.out.println("Basic car.");

3

// Decorator - HAS-A relationship with component interface
class CarDecorator implements Car {
protected Car car; // has-a

public CarDecorator(Car car) {
this.car = car;

}
@0verride

public void assemble() {
this.car.assemble(); // This one just passes the method along - a useless decorator here

}
// More interesting decorators (think JScrollPane, JGridPane)
class SportsCar extends CarDecorator {

public SportsCar(Car c) {
super(c);

@0verride
public void assemble() {
super.assemble();
System.out.print(" Adding features of Sports Car.");

by
class LuxuryCar extends CarDecorator {

public LuxuryCar(Car c) {
super(c);

@0verride
public void assemble() {
super.assemble();
System.out.print(" Adding features of Luxury Car.");

Adapter Pattern

interface IDog {
void bark();

void goForAWalk();

class DogImpl implements IDog {

@0verride
public void bark() {
System.out.println("WOOF");

@0verride
public void goForAWalk() {
System.out.println("walk walk walk walk");

3

interface IHuman {
void say(String msg);

void openDoor();

class HumanImpl implements IHuman {

@0verride
public void say(String msg) {
System.out.println(msg);

@0verride
public void openDoor() {
System.out.println("*Open door with opposable thumbs*");

E

// IDog -> IHuman adapter
class DogPretendingToBeAHuman implements IDog, IHuman {
IDog dog;

public DogPretendingToBeAHuman(IDog dog) {
this.dog = dog;

@0verride // Human method implemented with dog methods
public void say(String msg) {
String[] words = msg.split("\\s+");
for (String word : words) {
bark();

}

@0verride // Human method implemented with dog methods
public void openDoor() {
System.out.println("*Scratch at door feebly*");

// Dog methods - can just pass them along since we have a real dog

@0verride

public void bark() {
dog.bark();

}

@0verride
public void goForAWalk() {
dog.goForAWalk();

Strategy Pattern

// A Strategy is a function object
interface DanceStrategy {
void go(HumanImpl human);

class BoxStep implements DanceStrategy {
@0verride
public void go(HumanImpl human) {
human. say("Forward-side-together, backwards-side-together.");

}

class Moonwalk implements DanceStrategy {
@0verride
public void go(HumanImpl human) {
human.say("Lift heel, push, lift heel, push.");
}

}

class DoTwo implements DanceStrategy {
DanceStrategy first;
DanceStrategy second;

public DoTwo(DanceStrategy first, DanceStrategy second) {
this.first = first;
this.second = second;

@0verride

public void go(HumanImpl human) {
first.goChuman);
second. goChuman) ;

}

class RandomMove implements DanceStrategy {
DanceStrategy[] strategies;

public RandomMove(DanceStrategy... strategies) {
this.strategies = strategies.clone();

5

@0verride

public void go(HumanImpl human) {
int index = new Random().nextInt(this.strategies.length);
this.strategies[index].goChuman);

}
class Dancer extends HumanImpl {

void dance(DanceStrategy danceStrategy) {
danceStrategy.go(this);

